Windows 10 Technical Preview

1. Become an “Insider”

S w0 Congrats, you're an Insider
5 o o e :

2. Check the requirements

3. Download the ISO image

4. Copy onto USB drive or DVD disc.
5. Install

he latest Windows features you need to install Technical

Why “10”? And not “9”

Hypothesis 1

if (version.StartsWith ("Windows 9")) {
/* 95 and 98 */

}

else {

Hypothesis 2
Mac OS X (X is the Roman 10)

Hypothesis 3
You will get a free upgrade from “8” to “9”

Laying Out Components

Interior Design for GUls

What is Widget Layout?

Positioning widgets in their container
(typically a JPanel or a JFrame’s content
pane)

Basic idea: each widget has a size and
position

Main problem: what if a window changes

size?
Example>

Resizing a Window

@ Paint Shop Pro - [PrimaryT reatment3.jpg [1:2] (Background)]
File Edit Yiew Image Colors Layers Selections Masks Capture ‘Window Help ;Iilﬂ
[DEEa - +2a00 -=nwl 2

) ErTprrr ;I

Scrollbar added H

Menu wraps

2 Paint Shop Pro - [PrimaryT re: ment3. jp._. !E

File Edt “iew Image Cologly Lavers Selechons
Mazks Capture "Window Help _|ﬁ‘|£|

[= = S = - W s i

2. Spcomddary Traalrrisiid

hite ' BEa

I

Buttons
lost

shthe werilng ok e
arrp rarsiniong hies ok 22 B covmieieed el
wmara nk inome lorinm o b G pma i
ot o=@ final wettineg fank = the acralicen Lanks. _ILI

Hierarchical Widget Layout

window frame _
Widgets are arranged

‘ hierarchically, relative to the

‘ parent (recall containment
enu bar Panel hierarchv)
Merus 1, 2, 3 ... Toolbar Lcrall pane and scrollbar
Toolbar buttons Editor pane with styled text

1,2, 3. . plug-in kit

Hierarchical
Layout (2

Window frame

Editar parie with sbded text
plug-n kit

Seroll pane and scrollbars

‘Window frame

Menu bar and menus

Toolbar and taolbar buttons

Panel

Scroll pane

Editor pane

Shed text kit plugHn

Scrollbars in scroll pane

Size Properties

When a component is instantiated, it takes on
size properties...

Preferred size
Minimum size
Maximum size

These properties are used to determine

component size during (a) initial layout and (b)
resize operations

Size also affected by layout manager policies
(more on this later)

Example Programs

DemoSizeProperties.java

DemoSize.java

DemoPosition.java

_ButonCne | B2 |Helln | feilo el

Progamming Challenge

Create a new version of
DemoSizeProperties that presents the
component name, class, and size
properties in a JTable

Name the new program...

PC_SizeProperties.java

Solution

PC_SizeProperties.java

Eﬁ PC_SizeProperties

=] B3

| Y. |He||n||He||n Hello

Carmponent Class Freferred Size | Minirmum Size | Maxkimum Size
t JButtan 95 %27 Haw 2T e w27
b JButtan 49w 27 49w 2T 19w 27
lakel JLabel 29517 21T 29417
tF1 JTewtField 4% 27 4421 2147483R47T
tr JTewtField 33421 4421 2147483R47T
tra JTewtField 1104 21 4421 2147483R47T
ta JTexwthres SO %35 Ox1¥ 2147483R47T
panel JPanel 4304 95 220 % 3aT A2TET % 32TRT

Widget Layout Models

Absolute (aka fixed)
Control for component size and position

Struts and springs
Control for component position

Variable intrinsic size
Control for component size

Absolute Positioning

Component position and size explicitly
specified...

X and Y screen coordinates
Width and height of component
Units: pixels (typically)

Absolute Positioning (2)

Advantages
Simple to implement

Widgets retain their position and size when window is
resized (sometimes this is desireable)

Simple to build a resource editor (drag and drop
widgets onto a screen; e.g., Visual Basic)
Disadvantages

Difficult to change layout (too many ‘magic numbers’
or defined constants)
Poor response to resizing the window because...
Enlarging: too much empty space (ugly!)
Shrinking: components lost instead of wrapping

Example Program

DemoAbsolute.java

=4 D emoA bsolute =]

_Carrt |

ZUcchin |

Brocooli ‘

Brussel Sprouts |

A

Struts and Springs

Goals

Easy to use

Handles window resizing appropriately
ldea

Add constraints to define geometric
relationships between widgets

Struts and Springs (2)

Place struts and springs into layout
Struts (M) - fixed regions (they don’t change)
Springs (\N\() - can be compressed or stretched

\WA/ Text Field \/NA/ Button -

| |
Advantage

When the window is resized, widget position is
determined automatically by constraint equations

Variable Intrinsic Size

Each component has intrinsic size
properties (i.e., preferred size, minimum
Size, maximum size)

During layout, components report their
size properties to the layout manager
(recursively, If necessary)

Designers have limited control over this

Some layout managers respect size
properties, while others do not!

Widget Communication

Scenario #1: A scrollbar moves the enclosed text also
moves

Scenario #2: A window is resized components change
In position and size

How does this happen?

Pseudo-events are used for widget to widget
communication

“Pseudo” because they are a responses to an implicit
event (the reaction of one widget to another)

Accomplished by subclassing and parent notification

Subclassing

Most widgets are subclasses of other
widgets
Methods in superclass are overridden to

handle updating the widget as well as
notifying other widgets

Parent Notification

Widgets notify their parent (enclosing
widget) of any changes that have occurred

Parent does the “right thing” (e.g., ask a
scrollbar for its position and move the text
window)

Java's Layout Managers

BorderLayout
FlowLayout
GridLayout
BoxLayout
GridBaglLayout
CardLayout
OverlayLayout
etc.

BorderLayout

Places components in one of five regions
North, South, East, West, Center

Support for struts and springs
Struts (v)
Can specify ‘hgap’, ‘vgap’
Springs (x)
Inter-component space is fixed
Support for variable intrinsic size (v)
Components expand to fill space in region

Border Layout (2)

Components ‘expand’ (or ‘stretch’) to fill
space as follows
/ Expand direction

dmm North -
West A (Center e East
o Soth -

Example Program

DemoBorderLayout.java
usage: java DemoBorderLayout arg1

where 'arg1’ = strut size in pixels

Example (next 2 indes>

Example Program

No struts

!

Invocation: java DemoBorderLayout O

Launch

Resize

g%ﬂemnﬂmderl_aynul _ O] x|

ﬁi DemoBorderlayout

= Cammt =

Broccoli Yam Zucchini

== Bruzsel Sprouts = t t '
Brocecoli = VAN —) Zucchini

| ! |

== Hruscel Sproufs e

Variable intrinsic size

Example Program

With struts : hgap = vgap = 10 pixels

l

Invocation: java DemoBorderLayout 10

Launch

gﬁ DemoB orderl apout

f
Broccal h Yam h fucchin
L] |]

Brussel Sprouts

Struts

Resize

&g DemoBorderl ayout

Broccoli ram I Zucchini

Brussel sprouts

FlowLayout

Arranges components in a group, left-to-right
Group alignment: left, center, right
Wraps components to new line if necessary

Support for struts and springs
Struts (V)
Can specify ‘hgap’, ‘vgap’
Springs (%)
Inter-component space is fixed
Support for variable intrinsic size (%)
Component size is fixed

Space is added before/after/below the entire group of
components to fill available space

Example Program

DemoFlowlLayout.java

usage: java DemoFlowlLayout arg1 arg2
where 'arg1' = strut size in pixels
and 'arg2' is one of

c = center alignment

| = left alignment

r = right alignment

Example (next 2 slides)

Example Program (2)
Default for FlowLayout..

Example PrOgram (2) struts:hgap=vgap=5,.

alignment = center

Al

Invocation: java DemoFlowlLayout 5 ¢

Launch
E%DemnFlnwLaynut _ (O] x|
YA | Broceoli | Brussel Sprouts | Fucchini |
Resize
gﬁ D emoF low L ayout M=] B3

hE=la(| Broccoli | Brussel sprouts | Lucchini | -

\

Fill available space before/after/below group of components

Example Program (3)

With struts : hgap = vgap = 10,
alignment = right

H

Invocation: java DemoFlowlLayout 10 r

Launch
gﬁ DemoFlowl ayout =]
Yam | Broccoli | Brussel Sprouts | Zucchini |
Resize
E_%DemuFlquayuul: !EIE

canot | _vam | _eroscon | _ ensselsprows | [["zuceri |

GridLayout

Arranges components in a rectangular grid
The grid contains equal-size rectangles

Support for struts and springs
Struts (v)
Can specify ‘hgap’, ‘vgap’
Springs (%)
Inter-component space is fixed
Support for variable intrinsic size (v)

Components expand to fill rectangle

Example Program

DemoGridLayout.java

usage: java DemoGridLayout arg1

where 'arg1’ = strut size in pixels

Example (next 2 slid>

Example Program (2)

Invocation: java DemoGridLayout O

Launch
E‘gj DemobGndL ayout =]
4= Carrot = | 4= vam =
af= Hroccoli s Brussel Sprouts
A Zucchini e

Equal-size rectangles

No struts

Resize

*'?Ei DemoGndLayout

!

A= Broccoli e

Y arm

= Bruzsel Sproute s

= Eucihini -

Example Program (3)

Invocation: java

Launch

L camt var
Broceali Brussel Sprouts
Zucchini

With struts : hgap = vgap = 10

!

DemoGridLayout 10

Resize

E%": D emoGndLaypout

Carrot Yarm

Braceali Bruzzel Sprauts

Zucchini

BoxLayout

Arranges components vertically or horizontally
Components do not wrap

Support for struts and springs
Struts (v')
Can specify ‘rigid areas’
Springs (v)
Can specify ‘horizontal glue’ or ‘vertical glue’

Support for variable intrinsic size (v')
Components expand if maximum size property is set

Example Program

DemoBoxLayout.java

usage: java DemoBoxLayout arg1 arg2
where 'arg1' is one of

c = centre alignment

| = left alignment

r = right alignment

and 'arg2' is one of

e = enable struts and springs demo

d = disable struts and springs demo

Example (next 2 ind%

Example Program (2)

Invocation: java DemoBoxLayout r d
Invocation: java DemoBoxLayout | d
Invocation: java DemoBoxLayout c d

g% Demo... [N[=] E3

 Camot | | Camat |
anm A
Broceoli ‘ Hroccoli | Broceoli
Brussel Sprouts ‘ Brussel Sprouts ‘ Brussel Sprouts
Zucchini | Zucchini Zucchini

E Default is left align

Example Program (3)

Enable struts and
springs demo

!

Invocation: java DemoBoxLayout c e

Launch

Broccaoli |

Brussel Sprouts |

Zucchini |

Resize

EE,‘-_?"; DemoBox... =] E3

Yam
Braoccali I

Bruszel Sprouts |

Zucchini I

Springs

Struts (10 pixels)

Resize more

[3 DemoBoxLayout [M[=] E3

A |
Broccali |

Brussel Sprouts |

Zucchini |

Size Control

How is a component’s size determined
during layout and during resize
operations?

Three factor determining component sizes:

The component’s size properties (preferred,
minimum, and maximum)

Whether the size properties are “assumed” or
“explicitly set”
Layout manager policies

Example Program

DemoSizeControl.java

usage: java DemoSizeControl arg1
where 'arg1’' specifies the layout manager as follows:
1 = BorderLayout
2 = FlowLayout
3 = GridLayout
4 = BoxLayout

Example (next 2 slide>

Example Program (2)

Component construction and configuration

JButton b1 = new JButton("Button One");
JButton b2 = new JButton("B2)
JButton b3 = new JButton("B3'
JButton b4 = new JButton("B4'

b3.setMaximumSize(b1.getPreferredSize());

b4.setPreferredSize(new Dimension(150, 50));

b4.setMaximumSize(new Dimension(150, 50));

BorderLayout
FlowLayout

.. ButtonOne E;,% DemoSizeControl Hi=]
B3

B2 I B3 | B4

B4

GridLayout

EE% DemoSizeControl

BoxLayout
ﬁ DemoSizeControl M=l 3

B2 I B3 | B4 Expands to
maximum size
when resizing

Default Layout Managers

JPanel = FlowLayout
JFrame’s content pane = BorderLayout

Programming Challenge

Create a GUI layout, as follows

Name the program
PC_LayoutExample.java

et
E% FL_lL ayoultk zample _ O] x| EE” Pl pelisae gl !IEI E
Enter some text Enter some text
Hello there Hello there
Upon launching After resizing
Clear Exit
Clear ‘ Exit ‘

Solution

PC LayoutExample.java

E% PC_LayoutE xample _ O] %

Enter some text

Clear Exit

