
Windows 10 Technical Preview

� 1. Become an “Insider”

� 2. Check the requirements

� 3. Download the ISO image

� 4. Copy onto USB drive or DVD disc.

� 5. Install

Why “10”? And not “9”

� Hypothesis 1
� if(version.StartsWith("Windows 9")) {

� /* 95 and 98 */

� }

� else {

� Hypothesis 2

� Mac OS X (X is the Roman 10)

� Hypothesis 3

� You will get a free upgrade from “8” to “9”

Laying Out Components

Interior Design for GUIs

What is Widget Layout?

� Positioning widgets in their container
(typically a JPanel or a JFrame’s content
pane)

� Basic idea: each widget has a size and
position

� Main problem: what if a window changes
size?

Example

Resizing a Window

Menu wraps

Scrollbar added

Buttons

lost

Hierarchical Widget Layout

Hierarchical

Layout (2)

Size Properties

� When a component is instantiated, it takes on
size properties…
� Preferred size

� Minimum size

� Maximum size

� These properties are used to determine
component size during (a) initial layout and (b)
resize operations

� Size also affected by layout manager policies
(more on this later)

Example Programs

DemoSizeProperties.java

DemoSize.java

DemoPosition.java

Progamming Challenge

� Create a new version of
DemoSizeProperties that presents the
component name, class, and size
properties in a JTable

� Name the new program…

PC_SizeProperties.java

Solution
PC_SizeProperties.java

Widget Layout Models

� Absolute (aka fixed)

� Control for component size and position

� Struts and springs

� Control for component position

� Variable intrinsic size

� Control for component size

Absolute Positioning

� Component position and size explicitly
specified…

� X and Y screen coordinates

� Width and height of component

� Units: pixels (typically)

Absolute Positioning (2)

� Advantages
� Simple to implement
� Widgets retain their position and size when window is

resized (sometimes this is desireable)

� Simple to build a resource editor (drag and drop
widgets onto a screen; e.g., Visual Basic)

� Disadvantages
� Difficult to change layout (too many ‘magic numbers’

or defined constants)
� Poor response to resizing the window because…

� Enlarging: too much empty space (ugly!)
� Shrinking: components lost instead of wrapping

Example Program

DemoAbsolute.java

Struts and Springs

� Goals

� Easy to use

� Handles window resizing appropriately

� Idea

� Add constraints to define geometric

relationships between widgets

Struts and Springs (2)

� Place struts and springs into layout

� Struts () - fixed regions (they don’t change)

� Springs () - can be compressed or stretched

� Advantage

� When the window is resized, widget position is

determined automatically by constraint equations

Variable Intrinsic Size

� Each component has intrinsic size
properties (i.e., preferred size, minimum
size, maximum size)

� During layout, components report their
size properties to the layout manager
(recursively, if necessary)

� Designers have limited control over this
� Some layout managers respect size

properties, while others do not!

Widget Communication

� Scenario #1: A scrollbar moves the enclosed text also
moves

� Scenario #2: A window is resized components change
in position and size

� How does this happen?

� Pseudo-events are used for widget to widget
communication

� “Pseudo” because they are a responses to an implicit
event (the reaction of one widget to another)

� Accomplished by subclassing and parent notification

Subclassing

� Most widgets are subclasses of other
widgets

� Methods in superclass are overridden to
handle updating the widget as well as
notifying other widgets

Parent Notification

� Widgets notify their parent (enclosing
widget) of any changes that have occurred

� Parent does the “right thing” (e.g., ask a
scrollbar for its position and move the text
window)

Java’s Layout Managers

� BorderLayout

� FlowLayout

� GridLayout

� BoxLayout

� GridBagLayout

� CardLayout

� OverlayLayout

� etc.

BorderLayout

� Places components in one of five regions
� North, South, East, West, Center

� Support for struts and springs
� Struts (�)

� Can specify ‘hgap’, ‘vgap’

� Springs (�)
� Inter-component space is fixed

� Support for variable intrinsic size (�)
� Components expand to fill space in region

Border Layout (2)

� Components ‘expand’ (or ‘stretch’) to fill
space as follows

Example Program

DemoBorderLayout.java

usage: java DemoBorderLayout arg1

where 'arg1' = strut size in pixels

Example (next 2 slides)

Example Program

Launch
Resize

Variable intrinsic size

Invocation: java DemoBorderLayout 0

No struts

Example Program

Launch

Struts

With struts : hgap = vgap = 10 pixels

Invocation: java DemoBorderLayout 10

Resize

FlowLayout

� Arranges components in a group, left-to-right

� Group alignment: left, center, right

� Wraps components to new line if necessary

� Support for struts and springs
� Struts (�)

� Can specify ‘hgap’, ‘vgap’

� Springs (�)

� Inter-component space is fixed

� Support for variable intrinsic size (�)
� Component size is fixed

� Space is added before/after/below the entire group of
components to fill available space

Example Program

DemoFlowLayout.java

usage: java DemoFlowLayout arg1 arg2

where 'arg1' = strut size in pixels

and 'arg2' is one of

c = center alignment

l = left alignment

r = right alignment

Example (next 2 slides)

Example Program (2)

Invocation: java DemoFlowLayout 5 c

Launch

Resize

Fill available space before/after/below group of components

Example Program (2)

Default for FlowLayout…

struts : hgap = vgap = 5,

alignment = center

Example Program (3)

Invocation: java DemoFlowLayout 10 r

Launch

Resize

With struts : hgap = vgap = 10,

alignment = right

GridLayout

� Arranges components in a rectangular grid

� The grid contains equal-size rectangles

� Support for struts and springs
� Struts (�)

� Can specify ‘hgap’, ‘vgap’

� Springs (�)
� Inter-component space is fixed

� Support for variable intrinsic size (�)

� Components expand to fill rectangle

Example Program

DemoGridLayout.java

usage: java DemoGridLayout arg1

where 'arg1' = strut size in pixels

Example (next 2 slides)

Example Program (2)

Launch

Equal-size rectangles

Resize

Invocation: java DemoGridLayout 0

No struts

Example Program (3)

Invocation: java DemoGridLayout 10

With struts : hgap = vgap = 10

Launch Resize

BoxLayout

� Arranges components vertically or horizontally

� Components do not wrap

� Support for struts and springs

� Struts (�)

� Can specify ‘rigid areas’

� Springs (�)

� Can specify ‘horizontal glue’ or ‘vertical glue’

� Support for variable intrinsic size (�)

� Components expand if maximum size property is set

Example Program

DemoBoxLayout.java

usage: java DemoBoxLayout arg1 arg2

where 'arg1' is one of

c = centre alignment

l = left alignment

r = right alignment

and 'arg2' is one of

e = enable struts and springs demo

d = disable struts and springs demo

Example (next 2 slides)

Example Program (2)
Invocation: java DemoBoxLayout r d

Invocation: java DemoBoxLayout l d

Invocation: java DemoBoxLayout c d

Default is left align

Example Program (3)

Invocation: java DemoBoxLayout c e

Launch Resize Resize more

Enable struts and

springs demo

Springs

Struts (10 pixels)

Size Control

� How is a component’s size determined
during layout and during resize
operations?

� Three factor determining component sizes:
� The component’s size properties (preferred,

minimum, and maximum)

� Whether the size properties are “assumed” or
“explicitly set”

� Layout manager policies

Example Program

DemoSizeControl.java

usage: java DemoSizeControl arg1

where 'arg1' specifies the layout manager as follows:

1 = BorderLayout

2 = FlowLayout

3 = GridLayout

4 = BoxLayout

Example (next 2 slides)

Example Program (2)

Component construction and configuration

JButton b1 = new JButton("Button One");

JButton b2 = new JButton("B2");

JButton b3 = new JButton("B3");

JButton b4 = new JButton("B4");

b3.setMaximumSize(b1.getPreferredSize());

b4.setPreferredSize(new Dimension(150, 50));

b4.setMaximumSize(new Dimension(150, 50));

BorderLayout

FlowLayout

GridLayout

BoxLayout

Expands to

maximum size

when resizing

Default Layout Managers

� JPanel = FlowLayout

� JFrame’s content pane = BorderLayout

Programming Challenge

� Create a GUI layout, as follows

� Name the program
PC_LayoutExample.java

Upon launching

Hello thereHello there

After resizing

Solution

PC_LayoutExample.java

